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Sampling in Approximate Number Perception
Emily M. Sanford (esanford@berkeley.edu) & Steven T. Piantadosi (stp@berkeley.edu)

Department of Psychology, University of California, Berkeley

Abstract

Approximate number perception is noisy, but it is unclear what
kind of underlying process the noise reflects. Here we pro-
vide evidence that approximate number estimation should be
thought of as a sampling procedure. We show that the the av-
erage of two approximate number estimates of the same stimu-
lus tends to outperform either estimate alone; additionally, the
average difference between the two estimates of a given num-
ber linearly increases as a function of number, consistent with
Weber’s law. Finally, we provide evidence that people report
confidence ranges consistent with Weber’s law. This suggests
that they represent a distribution of possible responses even on
a single trial.

Keywords: Approximate number system, psychophysics,
sampling, distribution

Introduction
The ability to estimate large numbers, often called the Ap-
proximate Number Sense (ANS), is a key exemplar of quan-
titative representation (Dehaene, 1997; Feigenson, Dehaene,
& Spelke, 2004). Sensitivity to the number of objects in
an ensemble has been displayed in a variety of populations
and species (Bryer et al., 2022), from fish (Agrillo, Piffer,
& Bisazza, 2011; Bisazza, Tagliapietra, Bertolucci, Foà, &
Agrillo, 2014) and salamanders (Krusche, Uller, & Dicke,
2010; Uller, Jaeger, Guidry, & Martin, 2003) to human in-
fants, children and adults (Halberda & Feigenson, 2008;
Izard, Sann, Spelke, & Streri, 2009; Xu & Spelke, 2000).
A fair amount is known about the representation of approx-
imate quantities in the brain and mind. One central phe-
nomenon is scalar variability: estimates are imprecise, with
the amount of variability (standard deviation) increasing lin-
early as the number increases, consistent with Weber’s law
(Dehaene, 2003; Halberda & Feigenson, 2008; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004). A standard model of ap-
proximate number representation (Dehaene, 2003; Gallistel
& Gelman, 2000) formalizes this by assuming that we pos-
sess Gaussian curves which sit atop a mental number line,
and the degree to which the curves are activated as possible
responses depends on their distance to the true value. The
standard deviations of these curves increase linearly with the
represented number, giving the distribution,

P(responding k | shown n)∼ Normal(n,w ·n)

This model is supported by empirical response distribu-
tions, where the spread in estimates of a given value in-
creases as the value increases, or equivalently, numbers be-
come harder to discriminate as they get larger (Gallistel
& Gelman, 2000; Platt & Johnson, 1971). The model is
also supported by neuronal evidence, from a parieto-frontal
brain network—particularly the intraparietal sulcus—where,
in monkeys, there are number-selective neurons, whose acti-
vation is highest for their preferred number and progressively
declines with increasing numerical distance from the pre-
ferred number (Nieder & Miller, 2004; Nieder, 2005, 2016;
Roitman, Brannon, & Platt, 2007). The Gaussian curves can
be decoded from neuronal activity in the brains of the animals
performing numerical tasks, and an analogous result has been
obtained with fMRI in human subjects as well (Piazza et al.,
2004).

What has not been explicitly delineated, and was often as-
sumed but unstated in much of the previous work, is the step-
by-step procedure that a subject undertakes when making a
numerical estimate based on a stimulus. Here we study sev-
eral of the procedural steps involved in constructing an esti-
mate. Subject must first acquire information from the world
about the perceptual stimulus. Next, they activate or gener-
ate a representation based on that information. Finally, they
output a response in the form of an estimate.

In Experiment 1, we ask whether number estimation in-
volves stochastic sampling in the statistical sense. Sampling
is a process where observations are drawn from a distribu-
tion, and the likelihood of any particular observation being
selected depends on the height of the distribution at that point.
In number estimation, a sampling process could occur ei-
ther during the perception stage (gathering information about
the stimulus), or at the response stage (outputting a response
based on the representation). Our preliminary goal is to es-
tablish whether at least one of these two stages provides the
statistical benefits of a sampling procedure, as opposed to an-
other process like maximizing. To do this, we take advantage
of the fact that, when sampling from a normal distribution,
the average of multiple samples will tend to be closer to the
mean of the distribution than any of the samples alone (Vul &
Pashler, 2008). Therefore, to test whether number estimation
involves sampling (either during the perceptual or response
stages), we ask subjects to provide two number estimates in
response to each stimulus. If these two responses are sam-
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pled from a normal distribution, then the average of those
two responses will tend to be more precise than either esti-
mate alone. If the average of two responses does not out-
perform either alone, this would indicate that no sampling is
taking place. In this case, number estimation responses may
instead be better described as one’s ”best guess” of the num-
ber of objects in the stimulus. This would mean that both
the perception stages and the response stages are essentially
non-random: every time a subject sees the same stimulus,
they end up with (approximately) the same representation,
and every time they have that representation, they provide the
same response (e.g., the maximum, if the representation is
distributed).

Next, we investigate what format the mental representa-
tion mediating number estimation takes. As stated previously,
neural and behavioral evidence suggests that number rep-
resentations have distributional properties (Dehaene, 2003;
Nieder, 2005; Piazza et al., 2004). However, the distribution-
like results could be consistent with either an internally repre-
sented distribution, or instead an internally represented point
estimate, which becomes a normal distribution only when av-
eraged across many trials. Some previous evidence has sup-
ported the probabilistic nature of number representations by
demonstrating that people take into account the relative fi-
delity of different information sources (e.g., vision and audi-
tion) when making number estimates (Kanitscheider, Brown,
Pouget, & Churchland, 2015). Here we ask whether these
representations not only reflect one’s confidence about which
information source to rely upon, but also the typical psy-
chophysical characteristics associated with number estima-
tion behavior (i.e., scalar variability).

In Experiment 2, we ask subjects to provide intervals that
they are confident contain the true number of dots in the im-
age. If the representations underlying numerical responses
are probabilistic or distributional, we would expect subjects
to provide larger ranges for larger numbers, consistent with
Weber’s law (Gallistel & Gelman, 2000). If these representa-
tions are point estimates instead (albeit tagged with informa-
tion about the relative fidelity of the input source), we would
expect to find no relationship between the value being esti-
mated and the width of the interval provided by subjects. This
would indicate that the distributions associated with number
responses only emerge when multiple trials are aggregated,
but are not represented in the mind at the single trial level.

Experiment 1
Methods

Subjects
Subjects were online workers recruited on the platform Pro-
lific. 200 subjects completed the experiment and were paid
$1.64 for their participation.

Materials
Stimuli were randomly generated for each subject. Each stim-
ulus consisted of between 5 and 29 light gray dots on a dark

gray background. The dots could only appear at predeter-
mined locations within a grid. The grid had 10 rows, and the
number of columns varied based on the user’s screen size (be-
tween 5 and 28 columns) to meet the constraint that the rows
and columns be equally spaced. There were two instances of
each number (5 to 29) generated, yielding 50 unique stimuli.

Procedure
The experiment was completed on subjects’ own computers
over the internet. Subjects provided informed consent, then
were instructed to estimate the number of dots appearing on
the screen. Each stimulus was presented for 250 ms, followed
by a static mask displayed for 500 ms. A blank screen with a
text box remained until a typed response was submitted. The
experiment started with 5 practice trials with no feedback,
then subjects completed 100 experimental trials, divided into
two blocks with a self-paced break in between. Unbeknownst
to the participants, the second block consisted entirely of re-
peats of the 50 unique trials shown in the first block, in a dif-
ferent randomized order. As a result, subjects provided two
temporally separated estimates for the number of dots in each
of the 50 stimuli. Subjects were debriefed, paid, and thanked
for their participation. The experiment took a median time of
11:39 to complete.

Note that, because the two estimates were provided after
two separate viewings of the stimulus, with this method we
cannot distinguish whether any positive evidence of sampling
we find comes from the perceptual stage or the response stage
(or both).

Results
Analyses were preregistered on AsPredicted (#112280).

Data Cleaning
Following our preregistration, we excluded individual trials
as outliers if the response was beyond the 5% or 95% cut-
offs of responses given for each number. Of the 19,800 total
trials, 1708 were removed (including all of one participant’s
responses), leaving 18,092 trials for analysis. Additionally,
the entire dataset with no outliers removed was analyzed in
the Median Absolute Deviation analysis (see below), as this
analysis is robust to outliers.

The average of two guesses is better than either
alone
If subjects are sampling from a Weber-like distribution when
making an estimate, rather than each estimate reflecting their
best guess given all available evidence from the stimulus, we
would expect that the average of their two separate estimates
would tend to perform better than either guess alone.

Mean Squared Error (MSE) The first way we calculated
response error was using the Mean Squared Error (MSE) be-
tween responses and the true number depicted, following Vul
and Pashler (2008). We separately computed the MSE for
each trial across subjects for each of the two responses each
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Figure 1: The MSE of the average of two estimates is lower
than the MSE for either estimate alone.

subject provided, as well as for the average of each subject’s
two responses for that trial. We found that the average of
two responses easily outperformed either of the single esti-
mates alone (see Figure 1). Average responses (right bar)
had less error than either the 1st or 2nd response alone (left
and middle bars, respectively). This result was confirmed
with a nonparametric Friedman test, χ = 75.39, p < .001,
Kendall’s W = .754 (indicating a large effect size), and follow
up Wilcoxon signed rank test with Bonferroni corrections in-
dicated that the average estimate was different from both the
1st and 2nd estimates, ps < .001, while those estimates did
not differ from each another, p = 1.

Median Absolute Deviation (MAD) In addition to the
MSE, we also calculated the Median Absolute Deviation
(MAD) of the responses, as this measure is robust to outliers.
Following our pre-registration, no trials were excluded from
this analysis (N = 19,800). When analyzing the entire sample
with the MAD, the effect remained: the average of two es-
timates outperformed either single estimate alone. This was
again confirmed by a Friedman test, χ = 16.36, p < .001,
Kendall’s W = .164 (indicating a small effect size). Once
again, follow up Wilcoxon signed rank test with Bonferroni
corrections indicated that the average estimate was different
from either the 1st or 2nd estimates, ps < .005, while the 1st
and 2nd estimate did not differ from one another, p = 1.

Samples come from distributions that exhibit scalar
variability
Thus far, we have demonstrated that number estimation re-
sponses show properties of stochastic sampling. Next, we
asked whether the underlying distributions from which the
responses are being sampled are Weber-like, as would be ex-
pected with numerical behavior (Dehaene, 2003; Piazza et
al., 2004). If responses are sampled from distributions that
follow Weber’s law, we would expect that the difference be-

Figure 2: The average difference between two estimates for a
given stimulus increases linearly as a function of the number
of dots depicted in that stimulus.

tween two estimates for a given stimulus should increase, on
average, as the number of dots depicted increase – that is,
they should exhibit scalar variability. We found that this was
in fact the case, and the relationship was notably linear (see
Figure 2). Using the package brms to run a Bayesian mixed
effects linear regression with random intercepts and slopes for
subjects (Bürkner, 2018), we found that there was a strong re-
lationship between the number of dots in the stimulus and the
distance between the subject’s two estimates for that stimulus,
B = .21, 95%CI = [.19, .22], and this model outperformed the
null model, ∆LOOIC = 1969.

Psychophysical measures of performance
Finally, we also evaluated whether classic psychophysical
measures of estimation performance differed between the 1st
and 2nd estimate as well as their average. We fit each sub-
ject’s responses with a Bayesian modeling approach in Stan
(Carpenter et al., 2017). The model contained two parame-
ters: a Weber fraction (w) and a measure of bias (b). The
model assumes that estimation responses are drawn (i.e., sam-
pled) from a Gaussian distribution with a mean of Nb and a
standard deviation of Nb ∗w, where N is the true number, b
corresponds to how much the representation is under (b < 1)
or overestimated (b > 1) relative to the true value, and w is
an index of internal variability or precision (smaller w cor-
responds to a more precise representation). The model was
fit across subjects separately for each estimate (1st, 2nd, and
average).

We found that fitted Weber fractions were reliably smaller,
indicating better precision, for the average of the two esti-
mates as compared to either estimate alone (see Figure 3).
There was much less difference in bias; the bias of all three
estimates hovered very near to unbiased responding at b = 1.

Discussion
In this experiment, we have provided evidence that the pro-
cess of number estimation involves a stochastic sampling pro-
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Figure 3: Model-fitted psychophysical parameters.

cedure. Different viewings of the same stimulus lead to dif-
ferent responses, and this difference cannot be entirely at-
tributed to noise (e.g., noisy attempts to report the same re-
sponse at different times), since the average of two responses
performs better than either alone.

Experiment 2
Next, we ask whether people internally represent a distribu-
tion after viewing a stimulus for a very brief duration, or if
the process of sampling leads to the representation of a point
estimate. In the latter case, the resemblance of numerical re-
sponses to a distribution would emerge only by combining
across many trials.

Methods
Subjects
Subjects were again recruited from Prolific; 201 people par-
ticipated (all distinct from Experiment 1; although we pre-
registered N = 200, 1 additional subject participated due to
experimenter error, and their data are nonetheless included in
analyses as their inclusion did not change the results). Sub-
jects were paid $1.70 for their participation.

Materials
Stimuli were generated using the same procedure as de-
scribed in Experiment 1.

Procedure
In this experiment, instead of asking for a single estimate, we
asked subjects to provide an interval containing the correct
response. Following our consent procedure, subjects were
provided with the following instructions:

To respond, you will provide a range of intuitively plau-
sible values that you are very confident contains the cor-
rect number. For example, if an image actually contains
15 dots, you might answer ”Lower Number: 10, Higher
Number: 20” if you’re not so sure of the exact num-
ber. Or, you might answer ”Lower Number: 15, Higher
Number: 15” if you are completely certain that the an-
swer is 15. Try to provide the smallest range that you
can, while still capturing the true value inside the range.

As in Experiment 1, the stimuli appeared on the screen
for 250 ms, followed by a static mask displayed for 500 ms.
Then, two text boxes – one labeled “Low Number?” and one
labeled “High Number?” – remained on the screen until a re-
sponse was entered in both. Subjects received 5 practice trials
with no feedback followed by 50 experimental trials, with a
self-paced break in the middle. The experiment took a me-
dian time of 9:59 to complete.

Results
Analyses were preregistered on AsPredicted (#112280).

Data Cleaning
Of the total 10,050 trials, 21 were excluded because the range
provided was negative (i.e., the “high number” was lower
than the “low number;” visual inspection of these trials in-
dicated that they were mostly typos). Following our pre-
registration, we excluded trials as outliers if the size of the
range (high number minus low number) was beyond the 5%
or 95% cutoffs of responses given for each number across
subjects. With 10,029 remaining trials, this criterion removed
698, leaving 9,331 for analysis.

Interval size varies as a function of number
If the format of subjects’ number representation is distributed
or probabilistic (consistent with behavioral psychophysics of
number estimation), range estimates would get wider as the
number of dots in the stimulus increased. We found this to
be robustly the case; the average ranges given for each num-
ber are displayed in Figure 4. The x-axis corresponds to the
number being estimated, and the y-axis corresponds to the es-
timates provided. Note that only the high and low numbers
were actually supplied by participants; the points in the mid-
dle represent the midpoints of those ranges. People provided
increasingly wider interval estimates when trying to capture
large numbers as compared to small numbers: for 5 dots, the

Figure 4: Average ranges provided for each number; the
dashed line corresponds to perfect estimation.
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Figure 5: Number strongly predicts the average width of
ranges provided by subjects.

average interval was 4.92 to 8.61 (width = 3.69), while for 29
dots, the average range was 20.28 to 31.01 (width = 10.74).

We confirmed the linear effect of number on range size
using a Bayesian mixed effects linear regression with ran-
dom subject effects (see Figure 5). The number of dots in
the stimulus was highly predictive of range width, B = .29,
95%CI = [.27, .31], and the model explained significant vari-
ance over the null model, ∆LOOIC = 5766.6.

Discussion
In this experiment, we found that subjects have access to vari-
ability in their representations. They can explicitly indicate
that they are less certain and therefore require a wider range
to capture the correct value when the number is larger. This
indicates that the underlying representations are in fact dis-
tributions, and not simply point estimates. However, we note
that multiple samples may be used to estimate these distribu-
tions and intervals.

General Discussion
In this set of experiments, we have demonstrated that number
perception reflects a stochastic sampling process. This aligns
with previous work, which has argued that tasks like visu-
ally object identification similarly rely on sampling (Moreno-
Bote, Knill, & Pouget, 2011). We also provided evidence that
the mental representations involved in number estimation are
distributed, also consistent with prior research (Kanitscheider
et al., 2015).

As previously stated, with the current method we are
unable to determine whether sampling is occurring at the
perceptual stage, the response stage, or both. Much re-
search supports the hypothesis that visual perception behaves
much like a Bayesian sampling procedure (Kanitscheider
et al., 2015; Knill & Richards, 1996; Moreno-Bote et al.,
2011; Townsend, Hu, & Ashby, 1981). Other research
has suggested that responding on the basis of one’s own
probabilistically-distributed internal representation also in-

volves a sampling procedure, at least in the context of fac-
tual ”trivia-like” questions (Vul & Pashler, 2008). If the men-
tal representation employed during number estimation were a
point estimate, it would not be possible to sample from it to
provide a response. However, given that we the internal men-
tal representations appear to be distributed, this leaves open
the possibility that the sampling in Experiment 1 reflects sam-
pling from one’s internal probability distribution. Therefore,
it is entirely possible that both stages involve sampling. We
will investigate this in future research.

Another open question is how the mental representation
of a distribution is stored. One possibility could be a sam-
pler, where only the samples themselves are represented and
accessible, with no explicit means to calculate probabilities
(Sanborn & Chater, 2016). Another possibility is that param-
eters characterizing the distribution are actually calculated,
such that the representation could be compressed to some-
thing like a mean and standard deviation. It is relatively sim-
ple to convert between these two formats, and they would
both lead to extremely similar behaviors. Therefore, further
research will be necessary to differentiate between the two
formats.

Acknowledgments
This research was supported by NSF grant 2000759.

References
Agrillo, C., Piffer, L., & Bisazza, A. (2011). Num-

ber versus continuous quantity in numerosity judg-
ments by fish. Cognition, 119(2), 281–287. doi:
10.1016/j.cognition.2010.10.022

Bisazza, A., Tagliapietra, C., Bertolucci, C., Foà, A., &
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